Canine Disorder Mirrors Human Disease: Exonic Deletion in HES7 Causes Autosomal Recessive Spondylocostal Dysostosis in Miniature Schnauzer Dogs
نویسندگان
چکیده
Spondylocostal dysostosis is a congenital disorder of the axial skeleton documented in human families from diverse racial backgrounds. The condition is characterised by truncal shortening, extensive hemivertebrae and rib anomalies including malalignment, fusion and reduction in number. Mutations in the Notch signalling pathway genes DLL3, MESP2, LFNG, HES7 and TBX6 have been associated with this defect. In this study, spondylocostal dysostosis in an outbred family of miniature schnauzer dogs is described. Computed tomography demonstrated that the condition mirrors the skeletal defects observed in human cases, but unlike most human cases, the affected dogs were stillborn or died shortly after birth. Through gene mapping and whole genome sequencing, we identified a single-base deletion in the coding region of HES7. The frameshift mutation causes loss of functional domains essential for the oscillatory transcriptional autorepression of HES7 during somitogenesis. A restriction fragment length polymorphism test was applied within the immediate family and supported a highly penetrant autosomal recessive mode of inheritance. The mutation was not observed in wider testing of 117 randomly sampled adult miniature schnauzer and six adult standard schnauzer dogs; providing a significance of association of Praw = 4.759e-36 (genome-wide significant). Despite this apparently low frequency in the Australian population, the allele may be globally distributed based on its presence in two unrelated sires from geographically distant locations. While isolated hemivertebrae have been observed in a small number of other dog breeds, this is the first clinical and genetic diagnosis of spontaneously occurring spondylocostal dysostosis in a non-human mammal and offers an excellent model in which to study this devastating human disorder. The genetic test can be utilized by dog breeders to select away from the disease and avoid unnecessary neonatal losses.
منابع مشابه
Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6.
In humans, congenital spinal defects occur with an incidence of 0.5-1 per 1000 live births. One of the most severe syndromes with such defects is spondylocostal dysostosis (SCD). Over the past decade, the genetic basis of several forms of autosomal recessive SCD cases has been solved with the identification of four causative genes (DLL3, MESP2, LFNG and HES7). Autosomal dominant forms of SCD ha...
متن کاملMutated MESP2 causes spondylocostal dysostosis in humans.
Spondylocostal dysostosis (SCD) is a term given to a heterogeneous group of disorders characterized by abnormal vertebral segmentation (AVS). We have previously identified mutations in the Delta-like 3 (DLL3) gene as a major cause of autosomal recessive spondylocostal dysostosis. DLL3 encodes a ligand for the Notch receptor and, when mutated, defective somitogenesis occurs resulting in a consis...
متن کاملAnalysis of eye lens-specific genes in congenital hereditary cataracts and microphthalmia of the miniature schnauzer dog.
The congenital hereditary cataracts and microphthalmia in the miniature schnauzer dog are inherited by an autosomal recessive mode. To understand the genetic basis of these diseases, the authors purified and analyzed leukocyte deoxyribonucleic acid (DNA) from affected and normal animals using a candidate gene approach. Because the genes that encode the lens-specific proteins, specifically, alph...
متن کاملA molecular diagnostic test for persistent Müllerian duct syndrome in miniature schnauzer dogs.
In persistent Müllerian duct syndrome (PMDS), Müllerian ducts fail to regress in males during sexual differentiation. In the canine miniature schnauzer model, PMDS is caused by a C to T transition in exon 3 of the Müllerian inhibiting substance type II receptor (MISRII), which introduces a DdeI restriction site. Here we report a molecular diagnostic test for PMDS in the miniature schnauzer to i...
متن کاملA Deletion in the N-Myc Downstream Regulated Gene 1 (NDRG1) Gene in Greyhounds with Polyneuropathy
The polyneuropathy of juvenile Greyhound show dogs shows clinical similarities to the genetically heterogeneous Charcot-Marie-Tooth (CMT) disease in humans. The pedigrees containing affected dogs suggest monogenic autosomal recessive inheritance and all affected dogs trace back to a single male. Here, we studied the neuropathology of this disease and identified a candidate causative mutation. P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015